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A B S T R A C T

Improvement of carcass traits is highly emphasized in beef cattle production in order to meet consumer de-
mands. Discovering and understanding genes and genetic variants that control these traits is of paramount
importance. In this study, different genome wide association approaches (single step GBLUP GWAS, Bayes A and
Bayes B) were implemented and compared for three ultrasound carcass traits: fat thickness (FAT), intramuscular
fat (IMF) and ribeye area (REA) of a composite beef cattle breed. The results showed different SNP marker
windows associated with carcass traits explaining a small percentage of the genetic variance. The SNP marker
window with the highest percentage of genetic variance (1.83%) associated with FAT was located on BTA14 in
position 24 Mb. Surveying candidate genes in the regions associated with these traits revealed genes such as
LYPLA, and LYN genes which have been associated with feed intake and growth in beef cattle. This study
supported previous results from GWAS of carcass traits and revealed additional regions in the bovine genome
associated with these economically important traits. Comparing the top 5 SNP windows for each trait across the
GWAS methods revealed that only a few of these windows overlap.

1. Introduction

Beef cattle are marketed based on carcass characteristics. This has
generated a great interest in improving carcass merit through genetic
selection (Schroeder and Mark, 2000). Carcass phenotypes such as
intra-muscular fat, fat thickness and ribeye area are all moderately to
highly heritable allowing for accurate genetic merit prediction and
overall higher genetic gain (Pariacote et al., 1998). The amount of in-
tramuscular fat is a key factor in determining meat quality and palat-
ability (Koch et al., 1993; Wheeler et al., 1994) and back fat is re-
sponsible in determining cutability (Herring et al., 1994).

Discovery of genes and quantitative trait loci (QTLs) is of great
importance since they can be directly used in a marker assisted selec-
tion. One approach is genome wide association study (GWAS), a pow-
erful tool to detect genetic variants affecting economically important
traits (Goddard and Hayes, 2009). With the decreasing cost of geno-
typing, GWAS is becoming a routine. Numerous approaches of im-
plementing GWAS in animal agriculture have been proposed consisting

of linear and non-linear models. The single step GBLUP GWAS is a
linear model which assumes a normal distribution of SNP effects and
back solves SNP marker effects from genomic estimated breeding values
(GEBVs) (Aguilar et al., 2010; Wang et al., 2012). Non-linear ap-
proaches such as Bayes A and Bayes B assume a heavy tail prior dis-
tribution for SNP effects and use Markov Chain Monte Carlo (MCMC) to
sample from the posterior distribution (Meuwissen et al., 2001;
Kizilkaya et al., 2010). In this study, linear and non- linear approaches
were tested.

Several genome-wide association studies of carcass traits using
single nucleotide polymorphism (SNP) arrays have been conducted.
Lu et al. (2013) found several SNP markers associated with back fat
thickness, Longissimus dorsi muscle area or ribeye area and marbling
scores in a dataset consisting of different cattle breed.
Karim et al. (2011) reported two QTLs associated with bovine stature
on BTA 14 which mapped to the PLAG1–CHCHD7 gene. Moreover,
Barendse et al. (2007) have reported several QTLs associated with feed
efficiency traits. Recently, Silva et al. (2016) conducted a GWAS of
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carcass traits in Nellore cattle population using a high density SNP chip
and found several SNP windows explaining a small percentage of the
additive genetic variance. The majority of these QTLs identified in these
studies have not been validated. This issue is associated with the
complexity of the traits of interest. Complex polygenic traits are often
under the control of genetic and environmental factors and their in-
teraction. Thus, detecting genetic variants associated with these traits is
challenging especially when these variants have moderate to small ef-
fects (Todd et al., 2007; Hindorff et al., 2009). Classical genome wide
association studies (GWAS) suffer from the high dimensionality of the
parameter space leading to high false discovery rate (Balding, 2006;
Pe'er et al., 2008). Also, high linkage disequilibrium between a given
quantitative trait locus (QTL) and several markers, sometimes within
the same gene, leads to small effects to each one of these markers and
ultimately lack of statistical power to declare any of them as being
significant. This lack of statistical power has made the replication of
GWAS results difficult. In fact, there is a substantial literature in the
field of animal agriculture and human medicine on the inability to re-
plicate large portion of GWAS results (Visscher et al., 2012). Although
an increase in sample size will improve the statistical power and help
alleviate the problem, this alternative is costly, time consuming and
often not possible due to several reasons including the unavailability of
biological samples.

Few genome wide association studies have been conducted in
composite beef cattle populations. The objectives of this study are to
conduct and evaluate linear (single step GBLUP GWAS) and non-linear
approaches (Bayes A and Bayes B) of genome-wide association studies
using carcass traits of a composite beef cattle breed and also detect
additional variants associated with these traits.

2. Materials and methods

2.1. Data

Data for this study consisted of 3020 animals from a composite beef
cattle breed (50% Red Angus, 25% Charolais, 25% Tarentaise) born
between 2002 and 2011 at USDA-ARS, Fort Keogh Livestock and Range
Research Laboratory, Miles City, MT. Cows were randomly assigned to
be fed two levels of harvested supplemental feed from December to
March of each year. First level is adequate winter supplemental feed as
recommended by the industry (ADEQ) and second is marginal supple-
mental feed (MARG) which is approximately 61% of the supplemental
feed provided to ADEQ. At weaning, offspring from these cows were
randomly assigned to either ad libitum (CONTROL) or restricted
(RESTRICTED; 80% of control at a common body weight basis) access
to feeding for 140-d development post weaning. Average daily growth
resulting from the CONTROL and RESTRICTED levels of feeding were
0.67 and 0.51 kg/d for females and 0.94 and 0.62 kg for males.
Additional information is available in Newman et al. (1993a, 1993b)
and Roberts et al. (2016). The pedigree file consisted of 5374 animals
including 128 sires and 1723 dams. Ultrasound carcass phenotypes
considered in this study are fat thickness (FAT), intramuscular fat (IMF)
and ribeye area (REA). These phenotypes were collected as described
previously (Roberts et al., 2007). Summary statistics of the phenotypes
used is presented in Table 1.

Animals were genotyped using a mixture of low density SNP 3k
panel and high density Illumina Bovine50k (Illumina, San Diego, CA).
Animals genotyped with low density (LD) panel were imputed to the
50 K SNP panel using FImpute software (Sargolzaei et al., 2011) where
population and pedigree information were used simultaneously. The
average allelic R2 was 0.94 which indicates high imputation accuracy of
the missing genotypes.

Quality control was performed which consisted of excluding SNP
markers with minor allele frequency less than 0.05 and SNPs with Call
Rate (CRSNP) < 0.90 and Fisher's exact test P-value for
Hardy–Weinberg Equilibrium (HWE) < 1 × 10−5. After quality con-
trol, the number of SNP genotypes consisted of 41,694 SNP markers.

Table 1
Summary statistics of the dataset for fat thickness (FAT), ribeye area (REA), and
intra muscular fat (IMF).

Trait n Mean SD

FAT 2892 0.34 0.13
REA 2891 10.07 1.97
IMF 2893 3.23 0.66

Fig. 1. Distribution of animals using the first two principal components of the genomic relationship matrix.
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2.2. Variance component estimation

A linear model was adopted to estimate variance components for the
three carcass traits using REML. A single trait analysis was carried out
using BLUPF90 software package (Misztal et al., 2002). The model was
as the following:

= + +y Xb Zu e,

where y is the vector of phenotypes, X is an incidence matrix relating
phenotypes to fixed effects which included age of the animals at the
moment of ultrasound, sex effect, treatment effect (CONTROL, REST-
RICTED), dam treatment effect (ADEQ and MARG) as described before
and also contemporary group effect (year and age-of-dam subclasses), b
is the vector of fixed effects solutions, Z is an incidence matrix that

Fig. 2. Manhattan plots of the percentage of additive genetic variance explained by windows of 20 adjacent SNPs for fat thickness (FAT) using three different
methods.

Table 2
Variance components estimate of fat thickness (FAT), ribeye area (REA) and
intramuscular fat (IMF)a.

Trait σa
2 σe

2 h2

FAT 0.00073 (0.0001) 0.0014 (0.0007) 0.34 (0.06)
REA 0.51 (0.13) 1.08 (0.19) 0.32 (0.08)
IMF 0.12 (0.03) 0.14 (0.06) 0.46 (0.04)

σa
2: additive genetic variance; σe

2 = residual variance; h2: heritability.
a Numbers in parenthesis are standard errors of estimates of variance com-

ponents.
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relates animals to phenotypes, u is the vector of breeding values and e is
the vector of random residuals.

A principal component analysis on the genomic relationship matrix
(G) was conducted in order to investigate the population structure. The
analysis revealed no population substructure (Fig. 1), therefore prin-
cipal components were not included in the model.

2.3. Bayesian GWAS

The first GWAS approach implemented is the Bayesian GWAS.
Phenotypes were corrected for fixed effects using single trait model.
The fixed effects consisted of age of the animals at the moment of

ultrasound, sex effect, treatment effect (CONTROL, RESTRICTED), dam
treatment effect (ADEQ and MARG) as described before and also con-
temporary group effect (year and age-of-dam subclasses). This method
fits all SNP markers simultaneously utilizing prior information and in-
formation from the data. Bayes A and Bayes B models (Meuwissen et al.,
2001) were used. The Bayes A model is the following:

∑= + +
=

μ z αy e,
j

n

j j
1

where y is the vector of corrected phenotypes, µ is the overall mean, n is
the number of SNPs, zj is the genotype covariate of the jth SNP coded
according to the additive model (0, 1 and 2) αj is the allelic substitution

Fig. 3. Manhattan plots of the percentage of additive genetic variance explained by windows of 20 adjacent SNPs for intra muscular fat (IMF) using three different
methods.
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effect of SNPj, and e is the vector of random residuals. The Bayes B is
similar to the Bayes A model described above except for the SNP effects
part which changes to ∑ = z I αj

n
j j j1 where zj is the genotype of the jth

marker, coded as the number of copies of the minor allele, αj is the
effect of marker j, and Ij is an indicator variable that is equal to 1 if the
jth marker has a non-zero effect on the trait and 0 otherwise. A bi-
nominal distribution with known probability π = 0.01 was assumed for
Ij.

Estimated variance components were used as prior information and
a total of 50,000 MCMC iterations with 10,000 discarded as burn in
were implemented. Fixed windows consisting of 20 consecutive SNP
markers were used to calculate genetic variance explained by SNPs.
However, a sliding SNP window could also be used. The genetic var-
iance of SNP windows was calculated as the sum of each SNP variance
where the variance was calculated as −p p u2 (1 )i i i

2, where pi is the

minor allele frequency and ui is the ith estimated SNP marker effect. The
analysis was conducted using GenSel software package (Fernando and
Garrick, 2009).

Convergence testing was performed for all parameters following
Geweke's (1991) and Heidelberger and Welch's (1983), and visual
analysis of trace plots was also performed using Bayesian Output
Analysis program in R software 3.1 (R Core Team, 2014).

2.4. Single-step GWAS

The second genome wide association approach was carried out
through a single step (single step GBLUP GWAS) (Wang et al., 2012). A
single trait model was implemented for the three traits studied similar
to the animal model used to estimate the variance components. The
analysis was conducted using BLUPF90 software package (Misztal et al.,

Table 3
Results of genome wide association of fat thickness (FAT) in a composite beef cattle breed using different methods.

Chra Positionb Genesc % σ( )a
2 d

Single step GBLUP GWAS
BTA14 24,524,205 LYN, LYPLA1, MRPL15, PENK, RGS20, RP1, RPS20 1.10
BTA14 24,437,778 ATP6V1H, CHCHD,SDR16C5, SDR16C6, SOX17, TGS1, TMEM68 1.04
BTA14 24,573,257 MRPL15, PENK, RGS20, RP1, RPS20, SDR16C5, SDR16C6, SOX17 1.03
BTA14 24,407,125 CHCHD7, IMPAD1, LYN, LYPLA, TCEA1, TGS1, TMEM68 0.97
BTA14 24,607,527 CHCHD7, FAM110B, IMPAD1, UBXN2B 0.96
Bayes A
BTA14 24,524,205 LYN, LYPLA1, MRPL15, PENK, RGS20, RP1, RPS20 1.83
BTA13 33,626,917 ARHGAP12, CACNB2, EPC1, KIF5B, NSUN6, SLC39A12, ZEB1, ZNF438 1.80
BTA10 13,436,362 AAGAB, DENND4A, DIS3L, LCTL, MAP2K1, MAP2K5, MIR2290, RAB11A, RPL4, SLC24A1, SMAD3, SMAD6, SNAPC5, TIPIN, VWA9, ZWILCH 1.57
BTA22 14,133,039 ABHD5, CTNNB1, EIF1B, ENTPD3, MIR138-1, RPL14, TRAK1, ZNF621 1.56
BTA6 33,353,299 NOT_FOUND 1.23
Bayes B
BTA13 33,626,917 ARHGAP12, CACNB2, EPC1, KIF5B, NSUN6, SLC39A12, ZEB1, ZNF438 1.84
BTA14 24,573,257 CHCHD7, FAM110B, IMPAD1, UBXN2B 1.34
BTA14 24,524,205 LYN, LYPLA1, MRPL15, PENK, RGS20, RP1, RPS20 1.31
BTA10 13,436,362 AAGAB, DENND4A, DIS3L, LCTL, MAP2K1, MAP2K5, MIR2290, RAB11A, RPL4, SLC24A1, SMAD3, SMAD6, SNAPC5, TIPIN, VWA9, ZWILCH 0.64
BTA17 57,732,465 ACAD10, BRAP, CCDC63, CUX2, HSPB8, HVCN1, MYL2, PPP1CC, PRKAB1 0.50

a Bovine chromosome.
b Position in base pair based on UMD3.1 bovine genome assembly.
c Genes identified according to genome assembly UMD_3.1.
d Percentage of genetic variance explained by 20 SNP windows.

Table 4
Results of genome wide association of rib eye area (REA) in a composite beef cattle breed using different methods.

Chra Positionb Genesc % σ( )a
2 d

Single step GBLUP GWAS
BTA6 64,853,128 GNPDA2, GUF1, KCTD8, YIPF7 0.74
BTA16 47,443,681 ACOT7, DNAJC11, HES2, KCNAB2, KLHL21 0.72
BTA6 65,502,276 LAP3, GABRA2, GABRG1, GNPDA2 0.72
BTA16 47,558,131 NOL9, PHF13, RNF207, THAP3, TNFRSF25, ZBTB48 0.71
BTA6 65,749,899 GUF1, KCTD8, YIPF7 0.71
Bayes A
BTA18 2,220,037 AARS, ADAT1, BCAR1, BCNT2, CFDP1, CFDP2, CHST6, COG4, CTRB1, DDX19A, DDX19B, EXOSC6, FA2H, FUK, GABARAPL2, GLG1, IL34,

KARS, LDHD, LOC618826, MIR2324, MRCL, PDPR, SF3B3, ST3GAL2
1.72

BTA16 63,803,806 ACBD6, CACNA1E, LHX4, MR1, QSOX1, STX6, XPR1 1.65
BTA6 99,128,925 AGPAT9, COPS4, COQ2, ENOPH1, FAM175A, HNRNPD, HNRPDL, HPSE, LIN54, MIR2446, MIR2447, MRPS18C, PLAC8, SCD5, SEC31A, THAP9,

TMEM150C
1.47

BTA20 2,951,322 FGF18, GABRP, KCNIP1, KCNMB1, LCP2, NPM1, STK10, TLX3, UBTD2 1.36
BTA17 21,889,966 NOT_FOUND 1.18
Bayes B
BTA12 40,073,676 NOT_FOUND 1.46
BTA20 2,951,322 FGF18, GABRP, KCNIP1, KCNMB1, LCP2, NPM1, STK10, TLX3, UBTD2 1.16
BTA6 99,150,246 AGPAT9, COPS4, COQ2, ENOPH1, FAM175A, HNRNPD, HNRPDL, HPSE, LIN54, MIR2446, MIR2447 1.07
BTA6 99,128,925 MRPS18C, PLAC8, SCD5, SEC31A, THAP9, TMEM150C 1.07
BTA17 21,889,966 NOT_FOUND 0.71

a Bovine chromosome.
b Position in base pair based on UMD3.1 bovine genome assembly.
c Genes identified according to genome assembly UMD_3.1.
d Percentage of genetic variance explained by 20 SNP windows.
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2002).
After the estimation of SNP marker effects, the percentage of the

genetic variance accounted by 20 SNP markers fixed windows was also
estimated in order to detect relevant chromosome regions related to
carcass traits. The following equation was used to estimate this per-
centage per SNP:

∑⎜ ⎟= × ⎛
⎝

⎞
⎠=

v p q α p q α100 2 / 2 ,i i i i i

nsnp
i i i

2
1

2

where pi and qi are the allele frequencies for the ith SNP calculated
based on the dataset, αi

2 is the SNP marker estimated from the genomic
breeding values.

3. Results and discussion

Estimates of variance components and heritabilities of the three
ultrasound carcass traits are presented in Table 2. The resulting herit-
ability of FAT was 0.34. Several studies have reported genetic para-
meter estimates for ultrasound fat thickness in beef cattle (Minick et al.,
2002; Hassen et al., 2004). For REA, the heritability was 0.32, which is
on the lower end of the spectrum of reported heritabilities (Perkins
et al., 1992; Schalles et al., 1993). The heritability of IMF was 0.46
which falls within the reported estimates in the literature (Crews et al.,
2003).

The results of the different GWAS methods are shown in Figs. 1–3.
The top five windows of 20 SNPs explaining the highest percentage of
the genetic variance for each trait using different methods are presented
in Tables 3–5. In addition, the genes falling in these top regions of the
genome are also reported in Tables 3–5. For FAT, the window with the
highest percentage of genetic variance (1.10%) using single step GBLUP
GWAS was located on chromosome 14 in position 24 Mb. This same
window explained approximately similar percentage of genetic var-
iance using Bayes A and Bayes B (Table 3, Fig. 1).The window located
on BTA14 in position 24 Mb also accounted for 1.05% of genetic var-
iance for IMF using single step GBLUP GWAS (Fig. 3). On the other
hand, the SNP window explaining the highest percentage of genetic
variance for REA was located on BTA6 in position 64 Mb (Fig. 4).
Comparing the top 5 SNP windows for each trait across the GWAS
methods, we found that only a small number of these windows overlap.
This small overlap between the methods could be due to the prior

assumptions about the effects of the SNP markers. Single step GBLUP
GWAS approach assumes a normal distribution for SNP effects, and
calculates their effect from the phenotypes and the genomic relation-
ship matrix (Aguilar et al., 2010; Wang et al., 2012). Further, it assumes
equal weights for all SNP markers (Meuwissen et al., 2001; VanRaden,
2008) which is biologically not accurate (Meuwissen et al., 2001). On
the other hand, methods Bayes A and Bayes B are nonlinear and assume
heterogeneous variances of SNP effects (Meuwissen et al., 2001;
Kizilkaya et al., 2010). Furthermore, this inconsistency across the
GWAS methods could be due to the genetic architecture of the traits
considered. A simulation study by Daetwyler et al. (2010) showed that
when the number of QTLs is large, GBLUP is the appropriate model.

The overlapping top SNP windows across the three different GWAS
methods associated with FAT and IMF were located in BTA14 (Tables 3
and 5). This region of the genome contains several genes involved in
different biological processes. The overlapping significant SNP window
across the different GWAS methods for FAT and IMF was located on
BTA14 in position 24 Mb. This region included several QTLs previously
reported in the literature. Kneeland et al. (2004) mapped three QTLs
associated with birth weight in a composite beef cattle breed. Further,
Lee et al. (2013) conducted a genome wide association study of carcass
traits in Hanwoo beef cattle and detected a significant QTL on BTA14 at
24.3–25.4 Mb associated with carcass weight. Recently,
Silva et al. (2017) reported several significant regions on BTA14 asso-
ciated with backfat thickness and other carcass traits in a Bos Indicus
cattle breed.

Surveying the genes on BTA14 in the 24 Mb region, several genes
were detected: LYN, LYPLA1, MRPL15, PENK, RGS20, RP1, RPS20,
CHCHD7, IMPAD1, FAM110B, IMPAD1, UBXN2B, SDR16C5. Some of
these genes have been reported to have an effect on carcass and weight
traits in beef cattle. The PLAG1–CHCHD7 have been reported to be
associated with bovine stature, residual feed intake and fat deposition
in both Bos taurus and Bos indicus breeds (Lee et al., 2013; de Oliveira
Silva et al., 2017). Karim et al. (2011) reported the same region of the
genome detected in this study on bovine chromosome 14 which
mapped two QTLs to the PLAG1–CHCHD7. Moreover,
Utsunomiya et al. (2017) showed a strong selection signature of PLAG1
gene in BTA14 and its patterns of introgression into non-European
breeds supporting the role of PLAG1 in the change of cattle stature. The
LYPLA, and LYN genes have been associated with feed intake and

Table 5
Results of genome wide association of intra muscular fat (IMF) in a composite beef cattle breed using different methods.

Chra Positionb Genesc % σ( )a
2 d

Single step GBLUP GWAS
BTA14 24,326,513 ATP6V1H, CHCHD7, LYN, MRPL15, OPRK1, PENK, RGS20, RP1 1.05
BTA14 24,524,205 RPS20, SDR16C5, SDR16C6, SOX17, TCEA1, TGS1, TMEM68 1.03
BTA14 24,437,778 LYN, LYPLA1, MRPL15, NPBWR1 1.02
BTA14 24,153,510 OPRK1, RB1CC1, RGS20, RP1, RPS20, SDR16C5 1.02
BTA14 24,182,406 LYPLA1, MRPL15, NPBWR1, OPRK1, RB1CC1, RGS20, RP1, SOX1 1.01
Bayes A
BTA27 14,591,550 ACSL1, ANKRD37, C27H4orf47, CASP3, CYP4V2, F11, FAM149A, FAT1, IRF2 1.82
BTA14 16,387,114 FAM84B, MTSS1, NDUFB9, NSMCE2, SQLE, TATDN1, TMEM65, TRIB1 1.46
BTA6 32,548,500 ATOH1, PDLIM5, SMARCAD1 1.11
BTA16 24,323,587 BPNT1,C16H1orf115,EPRS,HLX,IARS2,LYPLAL1,MARK1,MIR194-1,MIR215,MIR664B,MOSC2,RAB3GAP2,SLC30A10 1.09
BTA16 78,157,760 ASPM, CD34, CD46, CRB1, F13B, LHX9, MIR2284N 1.08
Bayes B
BTA27 14,591,550 ACSL1, ANKRD37, C27H4orf47, CASP3, CYP4V2, F11, FAM149A, FAT1, IRF2, KIAA1430, KLKB1, PDLIM3, PRIMPOL, SLC25A4, SNX25,

SORBS2, TLR3
1.21

BTA14 16,387,114 FAM84B, MTSS1, NDUFB9, NSMCE2, SQLE, TATDN1, TMEM65, TRIB1 1.17
BTA16 24,323,587 BPNT1, C16H1orf115, EPRS, HLX, IARS2, LYPLAL1, MARK1, MIR194-1, MIR215, MIR664B, MOSC2, RAB3GAP2, SLC30A10 1.02
BTA6 32,548,500 ATOH1, PDLIM5, SMARCAD1 1.01
BTA17 32,818,172 ANKRD50 0.06

a Bovine chromosome.
b Position in base pair based on UMD3.1 bovine genome assembly.
c Genes identified according to genome assembly UMD_3.1.
d Percentage of genetic variance explained by 20 SNP windows.
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growth in beef cattle (Lindholm-Perry et al., 2012; Magalhães et al.,
2016) and the PENK gene is involved in numerous physiologic func-
tions. The BTA14 is a hot spot for several causative variants. This
chromosome has been one of the most widely studied chromosomes for
quantitative trait loci (QTL) related to many economically important
traits in cattle (Marques et al., 2007). Most QTLs discovered in beef
cattle fall into a region of 30 Mb, from 15 Mb to 45 Mb. For instance,
QTLs discovered included two QTLs for post weaning average daily
gain, four for pre-weaning average daily gain, three for birth weight
(Kneeland et al., 2004), three for carcass weight (Mizoshita et al., 2004)
and one for marbling score (Casas et al., 2003).

Other regions in chromosomes BTA13, BTA10, BTA22, BTA6, BTA0,
and BTA17 have been found associated with FAT and IMF from the

three GWAS approaches as shown in Tables 3 and 5.
The GWAS of REA using the three different methods resulted in

several SNP windows located mainly in BTA6 and BTA16 (Table 4).
These regions explained a relatively high percentage of genetic variance
for REA. Some of the regions detected have been reported to be asso-
ciated with growth and carcass traits (McClure et al., 2010; Saatchi
et al., 2014). Genes located in these regions included GNPDA2, GUF1,
KCTD8, YIPF7, ACOT7, DNAJC11, HES2, KCNAB2, KLHL21, ACBD6,
CACNA1E, LHX4, MR1, QSOX1, STX6, XPR1. The gene GNPDA2 cata-
lyzes the reversible reaction converting D-glucosamine-6-phosphate into
D-fructose-6-phosphate and ammonium. This gene in humans has been
associated with body mass index, susceptibility to obesity and diabetes
(Böttcher et al., 2012; Graff et al., 2013).

Fig. 4. Manhattan plots of the percentage of additive genetic variance explained by windows of 20 adjacent SNPs for rib-eye area (REA) using three different
methods.
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By examining the results of the three GWAS approaches for FAT,
REA and IMF, it is noticeable that the genetic variance explained by the
top 5 SNP windows is relatively small which supports the polygenic
nature of these traits. Furthermore, the differences in the associated
genomic regions across the three GWAS approaches (Tables 3–5) could
be due to the difference in the assumptions in the statistical models
used as discussed earlier. For FAT and IMF, the single step GBLUP
GWAS approach identified several SNP windows in one region of
BTA14. This could be due to SNPs being in strong linkage dis-
equilibrium and therefore the signal being dispersed across the neigh-
boring SNP markers. On the other hand, Bayes A and Bayes B identified
the same region in chromosome 14 in addition to other regions on the
genome and minimized the noise.

4. Conclusions

Improving carcass traits is an important objective in beef cattle
breeding programs. This study revealed additional regions in the bovine
genome associated with carcass traits and supported results from pre-
vious studies. Further, the results of this genome wide association study
showed some differences among the different statistical methods
adopted. This could be due to the several limitations genome wide as-
sociation studies still suffer from as discussed and shown in the litera-
ture. Furthermore, the relatively small percentage of genetic variance
explained by the top SNP windows supports the polygenic genetic
nature of carcass traits in beef cattle.
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